Structural Investigation of the Ligand Exchange Reaction with Rigid Dithiol on Doped (Pt, Pd) Au25 Clusters

نویسندگان

  • Annelies Sels
  • Giovanni Salassa
  • Stephan Pollitt
  • Clara Guglieri
  • Günther Rupprechter
  • Noelia Barrabeś
  • Thomas Bürgi
چکیده

The ligand exchange reaction between heteroatom doped (Pd, Pt) Au25(2-PET)18 (2-PET = 2-phenylethylthiolate) clusters and enantiopure 1,1′-binaphthyl-2,2′dithiol (BINAS) was monitored in situ using chiral highperformance liquid chromatography (HPLC). During the ligand exchange reactions, replacement of two protecting thiols (2PET) with one new entering BINAS ligand on the cluster surface occurs. The rigid dithiol BINAS adsorbs in a specific mode that bridges the apex and one core site of two adjacent S(R)−Au− S(R)−Au−S(R) units. This is the most favorable binding mode and theoretically preserves the original structure. A kinetic investigation on these in situ ligand exchange reactions revealed a decrease in reactivity after multiple exchange. A comparison of relative rate constants demonstrates a similar exchange rate toward BINAS for both (Pd, Pt) systems. The possible structural deformation after incorporation of BINAS was investigated by X-ray absorption spectroscopy (XAS) at the S K-edge and Au L3edge. First, a thorough assignment of all sulfur contributions to the XANES spectrum was performed, distinguishing for the first time long and short staple motifs. Following that, a structural comparison of doped systems using XANES and EXAFS confirmed the unaltered Au25 structure, except for some slight influence on the Au−S bonds. Additionally, an intact staple motif was confirmed after incorporation of rigid dithiol BINAS by both XANES and EXAFS. This finding agrees with a BINAS interstaple binding mode predicted by calculation, which does not perturb the cluster structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fate of Au25(SR)18 clusters upon ligand exchange with binaphthyl-dithiol: interstaple binding vs. decomposition.

The ligand exchange reaction between monodisperse Au25(2-PET)18 (2-PET: 2-phenylethylthiolate) clusters and 1,1'-binaphthyl-2,2'-dithiol (BINAS) was long thought to induce decomposition of the cluster (Si et al., J. Phys. Chem. C, 2009). We repeated the experiment and analyzed the reaction products using MALDI-TOF mass spectrometry. The spectra clearly indicate successful ligand exchange, biden...

متن کامل

A Density Functional Theory Investigation of d8 Transition Metal(II) (Ni, Pd, Pt) Chloride Complexes of Some Vic-dioximes Derivatives

Herein, a theoretical study on the stability of some vic-dioxime complexes of Ni(II), Pd(II) and Pt(II) in gas and aqueous phases is reported. The DFT/M06/SDD and DFT/M06/6-31G+(d,p) levels of theory were adopted for the metal ions and for every other element respectively. Structural analyses of investigated complexes have revealed square planar geometries stabilized by two O–H⋯Cl hydrogen bond...

متن کامل

Remarkable enhancement in ligand-exchange reactivity of thiolate-protected Au25 nanoclusters by single Pd atom doping.

The effect of Pd doping on the ligand-exchange reactivity of Au(25)(SC(12)H(25))(18) was studied by comparing the ligand-exchange reactivity of [Au(25)(SC(12)H(25))(18)](-) and [PdAu(24)(SC(12)H(25))(18)](0) and the results clearly demonstrate that, regardless of the kind of incoming thiols and solvents, Pd doping greatly increases the rate of ligand exchange of Au(25)(SC(12)H(25))(18), indicat...

متن کامل

Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold.

Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd(+) in the gas phase. While a lysozyme-Au adduct forms Au18(+), Au25(+), Au38(+) and Au102(+) ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag(+), Pt(2+), Pd...

متن کامل

A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold.

Due to the ultraslow ligand exchange rate on Pt, non-thiolated DNA is adsorbed on platinum nanoparticles (PtNPs) more stably than thiolated and even dithiolated DNA on AuNPs. Adsorption kinetics, capacity and stability are systematically compared as a function of DNA sequence. The Pt conjugates can tolerate extreme pH, salt, and thiol molecules. Taking advantage of the optical properties of AuN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017